In ΔABC , right-angled at  B ,  AB  = 24 cm, 
 BC  = 7 cm. Determine : 
 (i) sin  A , cos  A  (ii) sin  C , cos  C
Soln. : In right angle ΔABC, we have AB = 24 cm, BC = 7 cm
 
 
∴ Using Pythagoras theorem, AC2 = AB2 + BC2  
⇒ AC2 = 242 + 72 = 576 +49 = 625 = 252
⇒ AC = 25 cm
(i)  
  
(ii)   ,
,  
In the figure, find tan  P  - cot  R . 
 
Soln. : In right angle ΔPQR
Using the Pythagoras theorem, we get
QR2 = PR2 - PQ2
⇒ QR2 = 132 - 122 = (13 - 12)(13 + 12)
= 1 × 25 = 25
 cm
  cm
Now,  ,
,   
 
 
If  calculate cos A and tan A .
 calculate cos A and tan A . 
Soln. : Let us consider, the right ΔABC, we have 
Perpendicular = BC and   
Hypotenuse = AC 
 
Let BC = 3k and AC = 4k
 
= (4k)2 - (3k)2 = (4k - 3k)(4k + 3k) = k(7k) = 7k2 
 
 
  
 
  
Given 15 cot A = 8, find sin A and sec A .
SOLUTION:Soln. : In the right triangle ABC, we have
15 cot A = 8  
 
 
 
∴ AB = 8k and BC = 15k
Now, using Pythagoras theorem, we get
AC2 = AB2 + BC2
= (8k)2 + (15k)2 = 64k2 + 225k2 = 289k2 = (17k)2
⇒ AC =  
 
 
Given sec  θ  =  calculate all other trigonometric   ratios.
 calculate all other trigonometric   ratios. 
Soln. : In right ΔABC, ∠ B = 90°   
Let ∠ A = θ and sec θ =  
 
 
 
⇒ AC = 13k and AB = 12k 
∴ Using Pythagoras theorem, we get
BC2 = AC2 - AB2
⇒ BC2 = (13k)2 - (12k)2
 = (13k - 12k) (13k + 12k)
 = k(25k) = 25k2 = (5k)2
 
 
 
 
 
  
 
 
   
 
 
If ∠ A and ∠ B are acute angles such that cos A = cos B , then show that ∠ A = ∠ B .
SOLUTION:Soln. : Let us consider a right ΔABC,  ∠ C = 90°
Now, cos A = 
 
And  
Since, cos A = cos B
 
Now, in the ΔABC, two sides AC and BC are equal.       [Proved above]
∴ Their opposite angles are also equal.
∴  ∠ A =  ∠ B.
If cot  θ  =  evaluate:
 evaluate: 
 (i)  (ii) cot 2θ
   (ii) cot 2θ
Soln. : In right ΔABC,  ∠ B = 90° and  ∠ A = θ
 .......(1) [Given]
      .......(1) [Given]
But in right ΔABC, cot θ =  .......(2)
               .......(2)
 
From (1) and (2),  
⇒ AB = 7k and BC = 8k
∴ AC2 = AB2 + BC2 = (7k)2 + (8k)2
(Pythagoras theorem)
 
 
 
 
Now,
(i)  
 
  
(ii)  
If 3 cot A  = 4, check whether  
  
Soln. : In right angled ΔABC,  ∠ B = 90°
∴ For  ∠ A, we have:
Base = AB and perpendicular = BC. Also
Hypotenuse = AC
 
∴ 3 cot A = 4
∴ cot A =  4/3  ...(1)
But cot A  ...(2)
   ...(2)
∴ From (1) and (2),  
⇒ AB = 4k and BC = 3k
∴ Using Pythagoras theorem, we get
 AC2 = AB2 + BC2
⇒  AC2 = (4k)2 + (3k)2
 
  
Now,  
 
 
Now, to check the given equation,
L.H.S. =  
 
 
  ........(i)
   ........(i)
R.H.S. = cos2A - sin2A
 
  .........(ii)
  .........(ii)
From (i) and (ii), we have L.H.S. = R.H.S.
 
In triangle  ABC , right angled at  B , if tan  A  =  
find the value of : 
 
  (i) sin  A  cos  C  + cos  A  sin  C
  (ii) cos  A  cos  C  - sin  A  sin  C
Soln. : In right ΔABC,  ∠ B = 90° 
For  ∠ A, we have
Base = BC,  Perpendicular = AB,
Hypotenuse = AC
 .......(1) (Given)
   .......(1) (Given)
∴ tan A  ........(2)
  ........(2)
From (1) and (2), we have
  
 ⇒  AB =  and BC = 1k
 and BC = 1k
Now, using Pythagoras theorem, we get
AC2 = AB2 + BC2
 
 
Now,  ,
,
 
 
Again, for  ∠ C, we have  
Base = BC, Perpendicular = AB 
and Hypotenuse = AC
 ,
,
 
(i)  
 
 
(ii)  
 
In ΔPQR , right-angled at Q , PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P , cos P and tan P .
SOLUTION:
Soln. : In right ΔPQR,  Q = 90°
 
PR + QR = 25 cm and PQ = 5 cm
Let QR = x cm   ⇒  PR = (25 - x)
∴ By Pythagoras theorem, we have 
PR2 = QR2  + PQ2
⇒ (25 - x)2 = x2 + 52
⇒ 625 - 50x + x2 = x2 +25
⇒ - 50x = - 600  
⇒    i.e.,  RQ = 12 cm
 i.e.,  RQ = 12 cm
⇒ RP = 25 - 12 = 13 cm
Now,  ,
,  ,
,
 
State whether the following are true or false. Justify your answer.
 (i) The value of tan  A  is always less than 1.  
 (ii) sec  A  =  for some value of angle  A .
 for some value of angle  A . 
 (iii) cos  A  is   the   abbreviation used for the cosecant of angle  A . 
 (iv) cot  A  is the product of cot and  A . 
 (v)  for some angle  θ.
 for some angle  θ.
Soln. : (i) False [∵ A tangent of an angle is ratio of sides other than hypotenuse, which may be equal or unequal to each other.]
(ii) True [∵ cos A is always less than 1]
 i.e., sec A will always be greater
 i.e., sec A will always be greater 
than 1
(iii) False [∵ 'cosine A' is abbreviated as 'cos A']
(iv) False  ['cot A' is a single and meaningful term whereas 'cot' alone has no meaning.]       
(v) False [ is greater than 1 and sinθ cannot be greater than 1]
 is greater than 1 and sinθ cannot be greater than 1]
Evaluate the following: 
 (i) sin60° cos30° + sin 30° cos 60°  
 (ii) 2tan 2  45° + cos 2 30° - sin 2 60° 
 (iii)  
 
 (iv)  
 
 (v)  
 
Soln. : (i) sin 60° cos 30° + sin 30° cos 60°
 
 
 
 
  
(ii) 2tan2 45° + cos2 30° - sin2 60°
 
 
 

 
(iii)  
 
 
 
  
 
 
 
(iv)  
 
and cot 45° = 1
 
 
  

 
 
  
 
(v)  
 
 
 
  
Choose the correct option and justify your choice: 
 (i)  
 
  (A) sin 60° (B) cos 60° 
  (C) tan 60°  (D) sin 30° 
 (ii)  
 
  (A) tan 90° (B) 1 
  (C) sin 45° (D) 0 
 (iii) sin 2 A  = 2sin  A  is true when  A  = 
  (A) 0° (B) 30° 
  (C) 45° (D) 60° 
 (iv)  
 
  (A) cos 60°   (B) sin 60°   (C) tan 60° (D) sin 30° 
Soln. : (i) (A)  
 
  
 
(ii) (D) :  
 
(iii) (A) : When A = 0, then
sin 2A = sin 2(0°) = sin 0° = 0,
2 sin A = 2 sin 0° = 2 × 0 = 0
i.e., sin 2A = 2sin A for A = 0°
(iv) (C) :  
 
  
If tan ( A  +  B ) =  and tan ( A  -  B ) =
 and tan ( A  -  B ) =  
  
  0° <  A  +  B   <   90°;  A  >  B , find  A  and  B. 
Soln. : We have,
tan 60°   , tan 30° =
, tan 30° =  ......(1)
 ......(1)
Also tan (A + B)  and tan (A - B)
 and tan (A - B)  (Given)
 (Given)
    .......(2)
From (1) and (2), we get A + B = 60° and 
A - B = 30°
On adding A + B and A - B, we get 2A = 90°
⇒ A = 45°
On subtracting A + B and A - B, we get 2B = 30° 
⇒  B = 15°
State whether the following are true or false. Justify your answer. 
 (i) sin ( A  +  B ) = sin  A  + sin  B . 
 (ii) The value of sin θ  increases as  θ  increases.  
 (iii) The value of cos θ  increases as  θ  increases. 
 (iv) sin  θ  = cos  θ  for all values of  θ . 
 (v) cot  A  is not defined for  A  = 0°.
Soln. : (i) False : Let us take A = 30° and B = 60°, then L.H.S = sin (30° + 60°) = sin 90° = 1
R.H.S.= sin 30° + sin 60°
 
∴ L.H.S.  ≠  R.H.S.
(ii) True : Since the values of sin θ increases from 0 to 1 as θ increases from 0 to 90°.
(iii) False : Since the value of cos θ decreases from 1 to 0 as θ increases from 0 to 90°.
(iv) False : Let us take θ = 30°
 
 ⇒  sin 30°  ≠  cos 30° 
(v) True : We have cot 0° = not defined
Evaluate:
 (i)  (ii)
 (ii)  
 
 (iii)  (iv)
 (iv)   
Soln. : (i)  
⇒ sin 18° = sin (90° - 72°) = cos 72°
  [∵    sin (90° - A) = cos A]
∴  
(ii)  
tan 26° = tan (90° - 64°) = cot 64°    [∵    tan (90° - A) = cot A]
 
(iii) cos 48° - sin 42°
cos 48° = cos (90° - 42°) = sin 42° [∵    cos (90° - A) = sin A]
∴  cos 48° - sin 42° = sin 42° - sin 42° = 0
(iv) cosec 31° - sec 59°
cosec 31° = cosec (90° - 59°) = sec 59° [∵    cosec (90° - A) = sec A]
∴ cosec 31° - sec 59° = sec 59° - sec 59° = 0
Show that: 
 (i) tan 48° tan 23° tan 42° tan 67° = 1 
 (ii) cos 38° cos 52° - sin 38° sin 52° = 0 
Soln. : (i) tan 48° tan 23° tan 42° tan 67° = 1 
L.H.S. = tan 48° tan 23° tan 42° tan 67°
= tan (90° - 42°) tan 23° tan 42° tan (90° - 23°)
[Q  tan (90° - A) = cot A]
= cot 42° tan 23° tan 42° cot 23°
 
 
 
∴ L.H.S. = R.H.S.
(ii) cos 38° cos 52° - sin 38° sin 52° = 0 
L.H.S. = cos 38° cos 52° - sin 38° sin 52°
= cos 38° cos (90° - 38°) - sin 38° sin (90° - 38°)
= cos 38° sin 38° - sin 38° cos 38°
[∵  sin (90° - A) = cos A and cos (90° - A)= sin A]
= 0 = R.H.S.
∴ L.H.S. = R.H.S.
If tan 2 A = cot ( A - 18°), where 2 A is an acute angle, find the value of A .
SOLUTION:
Soln. : Since tan 2A = cot (A - 18°)
Also tan (2A) = cot (90° - 2A)
[∵  tan θ = cot (90° - θ)]
⇒ A - 18° = 90° - 2A
⇒ A + 2A = 90° + 18°
⇒ 3A = 108°  ⇒  
If tan A = cot B , prove that A + B = 90°
SOLUTION:
Soln. : tan A = cot B and cot B = tan (90° - B)
∴ A = 90° - B  ⇒  A + B = 90°
[∵ tan (90° - θ) = cot θ]
If sec 4 A = cosec ( A - 20°), where 4 A is an acute angle, find the value of A.
SOLUTION:
Soln. : ∵ sec 4A = cosec (A - 20°)
sec (4A) = cosec (90° - 4A)
[∵  cosec (90° -  θ) = sec θ]
∴  A - 20° = 90° - 4A
⇒ A + 4A = 90° + 20°
⇒ 5A = 110°  ⇒   A =  
If  A ,  B  and  C  are interior angles of a triangle  ABC , then show that  
Soln. : Since, sum of the angles of ΔABC is
 A + B + C = 180°
∴ B + C = 180° - A
Dividing both sides by 2, we get
  
 
               [∵ sin (90° - θ) = cos θ]
[∵ sin (90° - θ) = cos θ]
 
Express sin 67° + cos 75° in terms of trigonometric ratios of angle between 0° and 45°.
SOLUTION:
Soln. : Since sin 67° = sin (90° - 23°) = cos 23°
[∵    sin (90° - θ ) = cos θ]
Also, cos 75° = cos (90° - 15°) = sin 15°
[∵    cos (90° -  θ) = sin θ]
∴ sin 67° + cos 75° = cos 23° + sin 15°
Express the the trigonometric ratios sin  A , 
sec  A  and tan  A  in terms of cot  A. 
Soln. : (a) sin A  
   
 
 
(b)  
 
 
(c)  
Write all the other trigonometric ratios of ∠ A in terms of sec A.
SOLUTION:Soln. : (i)  sin A =  
  
 
  
(ii)   
 
(iii)  
  
(iv)  
 
  
(v)  
Evaluate : 
 (i)  
 
(ii)  
Soln. : (i)  
∵ sin 63° = sin (90° - 27°) = cos 27°
⇒ sin2 63° = cos2 27°
cos2 73° = cos2 (90° - 17°) = sin2 17°
 = 1
 = 1
[∵   cos2A + sin2A = 1]
(ii) sin 25° cos 65° + cos 25° sin 65°
∵ sin 25° = sin (90° - 65°) = cos 65°
[∵   sin (90° - A) = cos A]
cos 25° = cos (90° - 65°) = sin 65°
[∵   cos (90° - A) = sin A]
∴ sin 25° cos 65° + cos 25° sin 65°
 = cos 65° cos 65° + sin 65° sin 65°
 = (cos 65°)2 + (sin 65°)2
 = cos2 65° + sin2 65° = 1 [∵   cos2 A + sin2 A = 1]
Choose the correct option. Justify your choice. 
 (i) 9 sec 2   A  - 9 tan 2   A  = ................. 
  (A) 1 (B) 9 
  (C) 8 (D) 0 
 (ii) (1 + tan  θ  + sec  θ ) (1 + cot  θ   - cosec  θ ) = ................... 
  (A) 0 (B) 1 
  (C) 2 (D) - 1 
 (iii) (sec  A  + tan  A ) (1 - sin  A ) = ....................... 
  (A) sec  A   (B) sin  A
  (C) cosec  A   (D) cos  A
 (iv)  .........................
 ......................... 
  (A) sec 2   A   (B) - 1  
  (C) cot 2   A   (D) tan 2   A
Soln. : (i) (B) : Since, 9 sec2 A - 9 tan2 A
 = 9 (sec2 A - tan2 A) = 9 (1) = 9
[∵  tan2 A + 1 = sec2 A ⇒ sec2 A - tan2A = 1]
(ii) (C) : Here, (1 + tan θ + sec θ) (1 + cot θ - cosec θ) 
= (1 + tan θ + sec θ)  
 
= (1 + tan θ + sec θ)  
 
 
 
 
 
 
 = 2
 = 2
(iii) (D) : We have : (sec A + tan A) (1 - sin A)
 
 
 = cos A
 = cos A
(iv) (D) : Here,  
 = tan2 A
 = tan2 A
Prove the following identities,   where   the angles involved are acute angles for which the expressions are defined. 
 (i) (cosec  θ  - cot  θ ) 2  =  
 
 (ii)  
 
 (iii)  
 
 [Hint : Write the expression in terms of sin  θ    and cos  θ ]  
 (iv)  [Hint : Simplify L.H.S.   and R.H.S. separately]
 [Hint : Simplify L.H.S.   and R.H.S. separately] 
 (v)  = cosec  A   + cot  A  , using the   identity cosec 2   A  = 1 + cot 2   A .
= cosec  A   + cot  A  , using the   identity cosec 2   A  = 1 + cot 2   A . 
 (vi)  
 
 (vii)  
    
 (viii) (sin  A  + cosec  A ) 2  + (cos  A  + sec  A ) 2
 = 7 + tan 2   A  + cot 2   A
 (ix) (cosec  A  - sin  A ) (sec  A  - cos  A )  
   
 
 [Hint : Simplify L.H.S. and R.H.S. separately] 
 (x)  
Soln. : (i) L.H.S = (cosec θ - cot θ)2
 
  
 [∵ sin2 θ = 1 - cos2 θ]
 [∵ sin2 θ = 1 - cos2 θ]
 
[∵  1 - cos2 θ = (1 - cos θ) (1 + cos θ)]
 
Hence, L.H.S. = R.H.S.
(ii) L.H.S.  
 
 
 
 
 [∵  cos2 A + sin2 A = 1]
    [∵  cos2 A + sin2 A = 1]
 
 
    
 = R.H.S
= R.H.S       
Hence, L.H.S. = R.H.S.
(iii) L.H.S.  
 
 
 
 
 
 
 
 
 [∵   sin2 θ + cos2 θ = 1]
 [∵   sin2 θ + cos2 θ = 1] 

 
= cosec θ sec θ + 1 = 1 + sec θ·cosec θ
=  R.H.S.
(iv)  
 
 [Multiplying and dividing by (1 - cos A)]
 [Multiplying and dividing by (1 - cos A)]
 
 = R.H.S.  [∵   1 - cos2 A = sin2 A]
 = R.H.S.  [∵   1 - cos2 A = sin2 A]
(v) L.H.S.  
 [Dividing each term of num. and den. by sin A]
 [Dividing each term of num. and den. by sin A]
 
 [Multiplying and dividing by (cot A + cosec A)]
 [Multiplying and dividing by (cot A + cosec A)]
 
 
  
 
[∵   cot2 A - cosec2 A = - 1]
= cot A + cosec A = R.H.S.
(vi) L.H.S.  
 [Multiplying and dividing by (cot A + cosec A)]
 [Multiplying and dividing by (cot A + cosec A)]
 [∵  (1 - sin A) (1 + sin A)
       [∵  (1 - sin A) (1 + sin A)
= 1 - sin2 A] 
 [∵   1 - sin2 A = cos2 A]
 [∵   1 - sin2 A = cos2 A]
 
  
=  sec A + tan A = R.H.S.
(vii)  
 
 
 
(viii) L.H.S.  = (sin A + cosec A)2 + (cos A + sec A)2
= sin2 A + cosec2 A + 2 sin A·cosec A + cos2 A
+ sec2 A + 2 cos A·sec A
= (sin2 A + cos2 A) + cosec2 A + sec2 A + 2 + 2
[sin A·cosec A = 1 and sec A·cos A = 1]
= 1 + cosec2 A + sec2 A + 4
[∵   sin2 A + cos2 A = 1]
= 5 + (1 + cot2 A) + (1 + tan2 A)
[∵  cosec2 A = 1 + cot2 A and sec2 A = 1 + tan2 A]
= 7 + cot2 A + tan2 A = R.H.S
(ix) L.H.S. = (cosec A - sin A) (sec A - cos A)
 
 
 [∵ 1 - sin2 A = cos2 A
 [∵ 1 - sin2 A = cos2 A
and 1 - cos2 A = sin2 A]
= sin A·cos A
 
  
[∵  1 = sin2 A + cos2 A]
 [Dividing num. and den. by sin A cos A]
 [Dividing num. and den. by sin A cos A]
 
(x) 
 
 
= tan2 A = R.H.S.  ...(1)
 
 
 
= (-tan A)2 = tan2A = R.H.S. ...(2)
∴ From (1) and (2), we get
